A Multiple Hypothesis Testing Approach to Low-Complexity Subspace Unmixing
نویسندگان
چکیده
Subspace-based signal processing traditionally focuses on problems involving a few subspaces. Recently, a number of problems in different application areas have emerged that involve a significantly larger number of subspaces relative to the ambient dimension. It becomes imperative in such settings to first identify a smaller set of active subspaces that contribute to the observation before further processing can be carried out. This problem of identification of a small set of active subspaces among a huge collection of subspaces from a single (noisy) observation in the ambient space is termed subspace unmixing. This paper formally poses the subspace unmixing problem under the parsimonious subspace-sum (PS3) model, discusses connections of the PS3 model to problems in wireless communications, hyperspectral imaging, high-dimensional statistics and compressed sensing, and proposes a lowcomplexity algorithm, termed marginal subspace detection (MSD), for subspace unmixing. The MSD algorithm turns the subspace unmixing problem for the PS3 model into a multiple hypothesis testing (MHT) problem and its analysis in the paper helps control the family-wise error rate of this MHT problem at any level α ∈ [0, 1] under two random signal generation models. Some other highlights of the analysis of the MSD algorithm include: (i) it is applicable to an arbitrary collection of subspaces on the Grassmann manifold; (ii) it relies on properties of the collection of subspaces that are computable in polynomial time; and (iii) it allows for linear scaling of the number of active subspaces as a function of the ambient dimension. Finally, numerical results are presented in the paper to better understand the performance of the MSD algorithm.
منابع مشابه
P 4: The Hypothesis Detect Multiple Sclerosis in Early Stage with Saliva Testing
Introduction: Recent studies point to the clinical and research efficacy of saliva as a respected diagnostic aid for observing Multiple Sclerosis. The objectives of this Hypothesis are to identify novel biomarkers recognized to Multiple Sclerosis in early stage in saliva and to determine if the levels of these markers correlate with level of these Cerebrospinal fluid and blood assays and urine ...
متن کاملFully Constrained Oblique Projection Approach to Mixed Pixel Linear Unmixing
Mixed pixels, which are inevitable in remote sensing images, often result in a lot of limitations in their applications. A novel approach for mixed pixel’s fully constrained unmixing, Fully Constrained Oblique Subspace Projection (FCOBSP) Linear Unmixing algorithm, is proposed to handle this problem. The Oblique Subspace Projection, in which the signal space is oblique to the background space, ...
متن کاملA New Guideline for the Allocation of Multipoles in the Multiple Multipole Method for Two Dimensional Scattering from Dielectrics
A new guideline for proper allocation of multipoles in the multiple multipole method (MMP) is proposed. In an ‘a posteriori’ approach, subspace fitting (SSF) is used to find the best location of multipole expansions for the two dimensional dielectric scattering problem. It is shown that the best location of multipole expansions (regarding their global approximating power) coincides with the med...
متن کاملA parallel unmixing algorithm for hyperspectral images
We present a new algorithm for feature extraction in hyperspectral images based on source separation and parallel computing. In source separation, given a linear mixture of sources, the goal is to recover the components by producing an unmixing matrix. In hyperspectral imagery, the mixing transform and the separated components can be associated with endmembers and their abundances. Source separ...
متن کاملFast Spectral Unmixing based on Dykstra's Alternating Projection
This paper presents a fast spectral unmixing algorithm based on Dykstra’s alternating projection. The proposed algorithm formulates the fully constrained least squares optimization problem associated with the spectral unmixing task as an unconstrained regression problem followed by a projection onto the intersection of several closed convex sets. This projection is achieved by iteratively proje...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1408.1469 شماره
صفحات -
تاریخ انتشار 2014